Cauchy's Theorem and Edge Lengths of Convex Polyhedra
نویسندگان
چکیده
In this paper we explore, from an algorithmic point of view, the extent to which the facial angles and combinatorial structure of a convex polyhedron determine the polyhedron—in particular the edge lengths and dihedral angles of the polyhedron. Cauchy’s rigidity theorem of 1813 states that the dihedral angles are uniquely determined. Finding them is a significant algorithmic problem which we express as a spherical graph drawing problem. Our main result is that the edge lengths, although not uniquely determined, can be found via linear programming. We make use of significant mathematics on convex polyhedra by Stoker, Van Heijenoort, Gale, and Shepherd.
منابع مشابه
When can a graph form an orthogonal polyhedron?
Polyhedra are an important basic structure in computational geometry. One of the most beautiful results concerning polyhedra is Cauchy’s theorem, which states that a convex polyhedron is uniquely defined by its graph, edge lengths and facial angles. (See Section 2 for definitions.) The proof of Cauchy’s theorem (see e.g. [2]) unfortunately is nonconstructive, and the only known algorithm to rec...
متن کاملCauchy's Theorem for Orthogonal Polyhedra of Genus 0
A famous theorem by Cauchy states that a convex polyhedron is determined by its incidence structure and face-polygons alone. In this paper, we prove the same for orthogonal polyhedra of genus 0 as long as no face has a hole. Our proof yields a linear-time algorithm to find the dihedral angles.
متن کاملCauchy's Arm Lemma on a Growing Sphere
We propose a variant of Cauchy’s Lemma, proving that when a convex chain on one sphere is redrawn (with the same lengths and angles) on a larger sphere, the distance between its endpoints increases. The main focus of this work is a comparison of three alternate proofs, to show the links between Toponogov’s Comparison Theorem, Legendre’s Theorem and Cauchy’s Arm Lemma.
متن کاملWhat is the Bellows Conjecture?
Cauchy’s rigidity theorem states: If P and P’ are combinatorially equivalent convex polyhedra such that the corresponding facets of P and P’ are congruent, then P and P’ are congruent polyhedra. For many years it was unknown whether the same theorem was true in general for non-convex polyhedron. In 1977, more than 160 years after the work of Cauchy, Robert Connelly discovered a polyhedron P (wi...
متن کاملSmall deformations of polygons and polyhedra
We describe the first-order variations of the angles of Euclidean, spherical or hyperbolic polygons under infinitesimal deformations such that the lengths of the edges do not change. Using this description, we introduce a quadratic invariant on the space of first-order deformations of a polygon. For convex polygons, this quadratic invariant has a positivity property, leading to a new proof of t...
متن کامل